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Some mixed boundary-value problems for steady-state heat conduction in a rectangular do-
main with a variable heat-transfer coefficient are solved by reduction to infinite systems.

A condition of the third kind

g% e h(w—f) =0, (1)

corresponding to Newton's-law heat exchange with the ambient medium is often used as a boundary condi-
tion in the theory of heat conduction.

Problems are usually solved in the theory for h = const [1,2]. There are problems of practical in-
terest, however, for which the heat-transfer coefficient h is a function that varies along the boundary.
We shall give solutions for a certain class of such problems.

We consider a steady-state distribution of temperature in a cylindrical heat-evolving element of
rectangular cross section having distributed heat sources of constant power.

The two lateral surfaces of the element are assumed to be thermally insulated; there is Newton's~
law heat transfer to the ambient medium through the other two surfaces and the heat-transfer coefficient
varies along these surfaces. Such heat-transfer conditions are realized, in particular, when parts of the
lateral surface are cooled by a moving liquid or gas.

With the problem formulated in this way we can also consider the case in which heat is removed
through nonideal thermal contacts of arbitrary dimensions located on the surface of the heat-evolving ele~
ment.

To make the problem general we also introduce bulk heat absorption that is proportional to the tem~
perature of the body at the given point. Thanks to such heat "sinks" the processes associated with the
effects of radiation, ionization, etc. can be simulated in 2 linear approximation, Moreover such a treat-
ment also enables us to investigate the steady-state temperature distribution in a rectangular plate of
fairly small height within the framework of the two-dimensional theory; this is done by replacing the heat
fluxes through the end surfaces by a certain additional heat absorption introduced into the two-dimensicnal
heat-conduction equation [1].

In accordance with the physical situation we formulate the following mixed boundary-value problem
of steady-state heat conduction in the domain G{0 = x =1, —1 =y = 1} bounded by contour I’ (Fig. 1):

M— gl — P,

—«—(_1“- < h(ue-fy=:0 on vy, (2)
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y Here h and f are arbitrary piecewise-smooth functions specified

! 1 on the boundary v (h(x) = 0); P = const > 0 and q2 = const > 0 are param-
eters characterizing the power of bulk evolution and absorption of heat,
g Z respectively; n is the exterior normal to I', Since (2) is linear in P,
ol we shall henceforth take P = 1 with no loss of generality.
-1 T We shall confine the discussion to the search for a solution of (2)

that satisfies the condition of symmetry about y = 0.
Fig. 1. Domain of varia- :

tion of the variables. Using the substitution

. I/ h gy
w(t 9) =0 - ol y)s—;kl—cﬂ) o ) )
q chg
we reduce the boundary~value problem (2) to solution of the homogeneous equation
Av—g'v =0 4)
with the boundary conditions
%0 for £ =0 and =1, (5)
0x
dv |
+— - h(x)v="F(x) for y=--1, (6)
7

F(x)=ihqi+h(x>f<x).

A solution of the form

U(x’ y): Z vh(xa y) =

k=0

mﬂ cho,y
= a, —22 cosh.x,
gl * ch ©, ¥ -
Tk PN,
hp=—, Op=M-+¢)".

!
satisfies (4) and (5). The coefficient ak of this expansion must be found from the boundary condition (6),
which leads to the relationship
E @0, €08 hyx -+ A (x) Z a, coshx = F (%),
k=0 k=0 (8)
Py, = o, tho,.

On the interval 0 = x = [ we represent h(x) and F(x) as the following Fourier series:

h(x) = %— —1—2 h,, cos hpx,
k=1

PR
F(x) = 2% v, COS A, X.
() =2+ ?);‘ 1 COS
Next we consider the function ¢(x) = v(x, y) Iy=1, 0 < x=1; onthe basis of (7), its Fourier series has the
form
@ (x) = 2 a, cos Ay,
k=0
and we then write the Fourier series for the product of the functions h(x) and ¢(x):
0 [ ~
Ao () = -2 - N0, coshx, 0 x<L. 10
()0 (%) 2 ﬁ I K LXK 10
If h(x) and @(x) belong to the class Ly(0, ) of quadratically integrable functions, we can write the
following formulas for the coefficients 6k of expansion (10) [3]:
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(11)
1 %=
ek = aohk \}" —Q— L Ay (hk-m 7%‘ hk+m)’ k= 1’ 2’ ]
m=1
where we must take h~| = hi in (11).
Substituting the expansions (9) and (10) for F(x) and h(x) ¢(x) into (8) we obtain
E a,p, cosh,x + —2"— —1—26h COS A yx= —”‘;i ‘\j V), COS Ay X
k=<0 k=1 fe==1
Allowing for (11), we then have
fy i - v
a A=t Wl fo== 0
"(p" 2) 2 >.4’”’“ 2
m=] (12)
RS .
a0, 4 aghy, - 5 (M ARy ) =y, k=102,
m==1
Eliminating @, from (12), we arrive at an infinite system of linear algebraic equations for the unknown
coefficients ay:
Z‘ Chm m == M k== I, 2, e
me=]
1 I hh
o= | (] Ny _ltm (13)
Cl.m .0/‘ { 9 (711 n 17hm> 20 —‘ hjl

1 Vo )
Ne = — |V, — .
Tr ph < k 290 = ho h

Let us investigate the problem of determining the sequence ak from the infinite system (13). We note that
since h(x) = 0, then hy > 0, lhkl < 2p4 + hy and therefore
2

1 Ckm ‘\2 N »: T (‘ hh—m \2 ’If i hi{+m !2 "'i" ‘ hm \2)
h

Let us show that the matrix (Ckm) satisfies the condition

0

E '.Ckm{z<oo‘ (14)
k, m=1
In fact,
0?1 “1 2 1 2
\ C: \ A - - hy L) =
H I Im‘ H k A(I . Rtn )
k, m=} o=
5]
E = ( L hm ““ v h;n e \1 h’l‘?lj \*:: (15)
h=1 P m—-u 1 m —l
< const E (_lv z hzz\ .
=1 k m==0
Since hy are Fourier coefficients, the series 2 h%n converges so that the validity of the estimate
n=0
(14) follows from (15), "
The inequality
AN My P <o (16)
Lol

k==]

is valid for the sequence of free terms nik of the infinite system (13),

Thanks to the estimates (14) and (16} that we have found, we can use a reduction method to find the
coefficients ay from (13) [4]; the method consists in the following: we take as an approximate solution of
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Fig. 2. Lines of isotherms for g =0 @) and q =1 (b).

the infinite system (13) the solution of the corresponding abridged system

N
af =3 Congh=my k=12, ..., N,

m=]
where we have convergence of the approximate solution afg to the exact ax when N — «,

On the basis of the first relationship of (12) the value of aj should be determmed from the formula

. 1
af:m—( zam )

Thus the solution of the initial boundary-value problem (2) is represented by the expression

/1_E§gg) 4+ \1ahuc05/\ 17
\ chg _0 cho,

“th )= —
o

with coefficients ay satisfying (13), which can be solved by reduction.

For the special case in which h(x) = H = const in the interval 0 = x = [ the matrix (Ckm) becomes a
diagonal matrix, the infinite system (13) splits up and the exact values of the coefficients in (17) can be
written out:

Vo Vi

y ah = - .
2(p,+ H) 0, - H

Ay =

The relationships (13) and (17) that we have obtained were used to calculate the temperature distri-
bution in problems with various h(x) dependences. In particular, it is interesting to consider the case in
which h(x) is a continuous function

0 for OCxliy l—x,<x<!

h(x) =
Hy = const for x,<<x<l—x,.

Specification of h(x) in this way corresponds to transfer of heat to the external medium through nonideal
thermal contacts having arbitrary dimensions.,

Figure 2a,b shows the temperatures in such problems for cases q = 0 and g = 1, respectively, when
f=0, Hy=100, i =4, and xy = 1. For clarity the boundary segments corresponding to the thermal con-
tacts are shown hatched in the figures.
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To conclude, we note that an analogous method may be used to solve the initial problem with a
boundary condition of the first kind on I'\'y the solution of such a problem is also represented as a tri-
gonometric series with coefficients determined from the corresponding infinite system.

NOTATION
u is the temperature;
h is the heat-transfer coefficient;
f is the temperature of the external medium;
X, y are the coordinates;
l is a parameter characterizing the ratio of the sides of the rectangle;
ag, hg, vk, 0k are the Fourier coefficients;
Pk, Wks Ak, Mk are the parameters that depend on the summation index;
Ckm is the matrix elements of the infinite system;
P, v, w are the auxiliary functions.
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